Warm-Up

4/10/17

One of these tables represents a linear relationship, one represents an exponential growth and one represents an exponential decay.

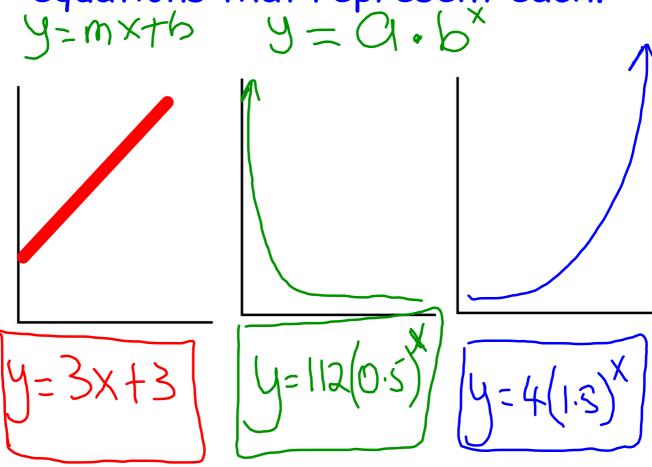
Label each table correctly.

Inear		
X.	У	
1	б	
2	9	
3	12	
4	15	

4	15
Q =	3
M^{z}	9-6
\mathcal{W}^{\leq}	3
4-1-1	
Whe	n X= 0,
y=:	3

Expo.	dew
X.	X.
1	56
2	28
3	14
4	7

5x13 dromin		
X.	X.	
1	6	
2	9	
3	13.5	
4	20.25	


$$Y = \frac{9}{6} = 1.5$$

$$| 9 = 1.5$$

$$| (0, 4)$$

Warm-Up 4/10/17

2. Sketch the graphs of each relationship and write the equations that represent each.

Learning Objectives 4/10/17

Compare and contrast linear, quadratic, and exponential functions and their characteristics.

Opening 4/10/17

- How is a linear function different from a quadratic function?
- How is a quadratic function different from an exponential function?

Glue in your INB 4/10/17

Identifying from an equation:

<u>Linear</u>

Has an x with no exponent.

$$y = 5x + 1$$

$$y = \frac{1}{2}x$$

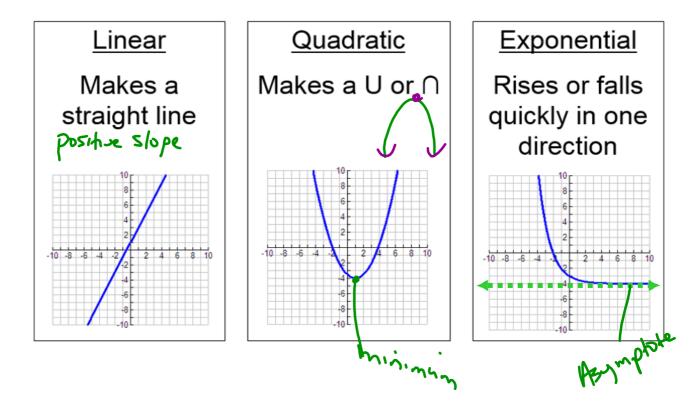
$$2x + 3y = 6$$

Has ar (x²)in the equation.

$$y = (2x^2) + 3x - 5$$

 $y = (x^2) + 9$
 $(x^2) + 4y = 7$

Exponential


Has an <u>x</u> as the exponent.

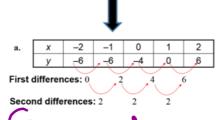
$$y = 3^{x} + 1$$

$$y = 5^{2x}$$

$$4^{x} + y = 13$$


Identifying from a graph:

Identifying from a Table

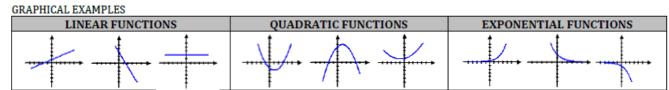

Linear

- Never see the same y value twice.
- 1st difference is the same

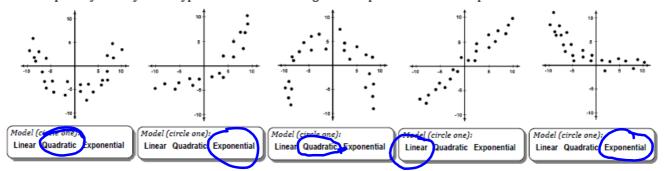
Quadratic

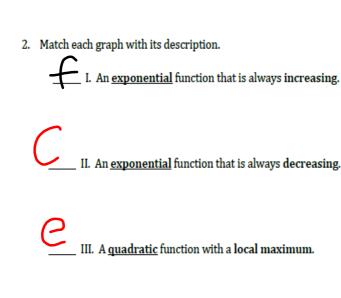
- See same y more than once.
- 2nd difference is the same

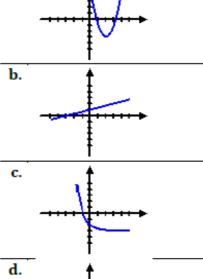
Exponential

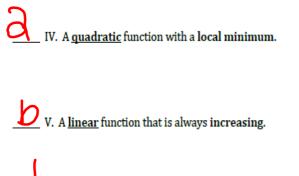

- y changes more quickly than x.
- Never see the same y value twice.
- Common multiplication pattern

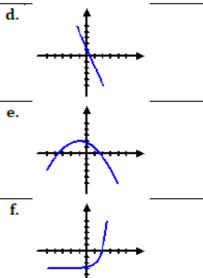
Common ratio.


Class Work

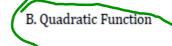

4/10/17


Work with your table partner to complete this.


1. Graphically identify which type of function model might best represent each scatter plot.

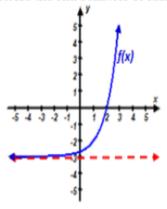


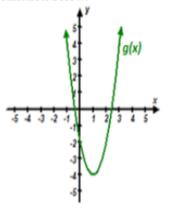
a.



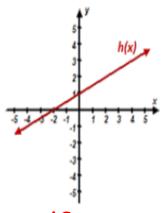
- 3. Which is the only type of function below that has an asymptote when graphed?
 - A. Linear Function

B. Quadratic Function


- 4. Which is the only type of function below that could have a local maximum?
 - A. Linear Function


C. Exponential Function

5. Describe the end behavior of each of the function below.


A.

B.

C.

Name: Monentia

Name: Quadratic

Name: Inear

left As
$$x \to -\infty$$
, $f(x) \to \underline{\hspace{1cm}}$

As
$$x \to -\infty$$
, $g(x) \to$

As
$$x \to -\infty$$
, $h(x) \to \underline{-\infty}$

As
$$x \to \infty$$
, $f(x) \to \bigcirc$

As
$$x \to \infty$$
, $q(x) \to \infty$

As
$$x \to \infty$$
, $h(x) \to \bigcirc$

- 6. Which is the only function that might have end behavior such that as x approaches infinity, f(x) approaches 4?
 - A. Linear Function

- B. Quadratic Function
- C. Exponential Function
- 7. Which is the only function below that might have end behavior such that:
 - As $x \to -\infty$, $f(x) \to \infty$

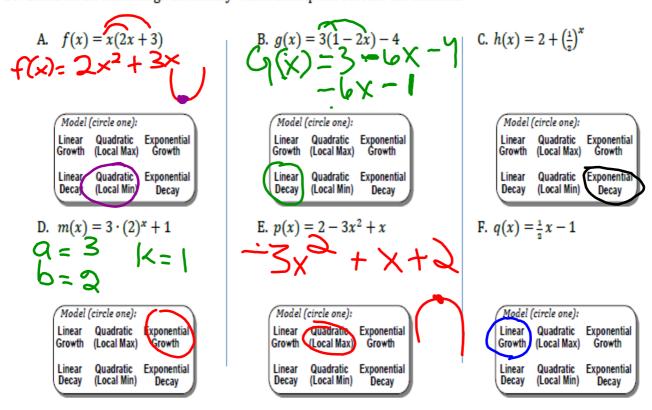
 $As x \to \infty, f(x) \to \infty$

A. Linear Function

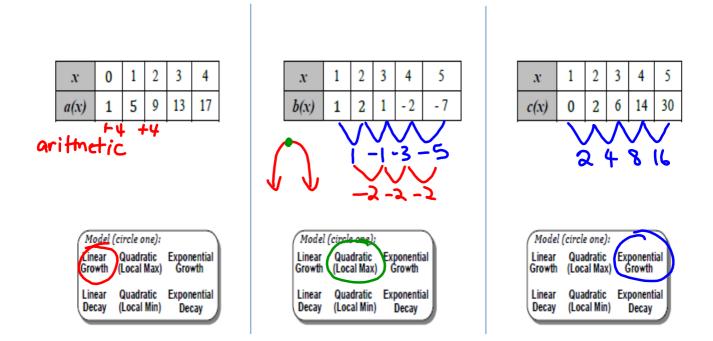
- . Quadratic Function
- C. Exponential Function
- 8. Which is the only function below that might have end behavior such that:
 - As $x \to -\infty$, $f(x) \to -\infty$

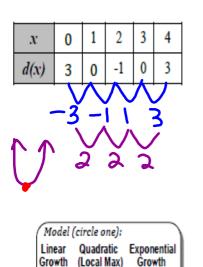
• As $x \to \infty$, $f(x) \to \infty$

A. Linear Function


- B. Quadratic Function
- C. Exponential Function
- 9. Which is the only function below that might have end behavior such that:
 - As $x \to -\infty$, $f(x) \to -\infty$

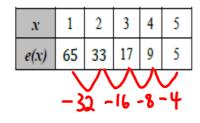
• As $x \to \infty$, $f(x) \to -\infty$

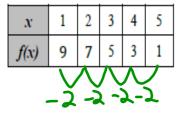

A. Linear Function


- B. Quadratic Function
- C. Exponential Function

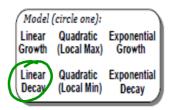
10. Based on the function given identify which description best fits the function.

11. Based on the partial set of values given for a function, identify which description best fits the function.


Quadratic


(Local Min)

Decay


Exponential

Decay

Model (circle one):
Linear Quadratic Exponential
Growth (Local Max) Growth
Linear Quadratic
Decay (Local Min) Exponential
Decay

Closing: 4/10/17

- 1. Exit Ticket: Identify the following 6 functions as linear, quadratic, or exponential.
- 2. Interactive questions.

Day 1-Comparing Linear-Quadratic-&-Exponential Functions 3rd Block.notebo4optril 10, 2017